Step of Proof: order_split
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
order
split
:
T
:Type,
R
:(
T
T
).
Order(
T
;
x
,
y
.
R
(
x
,
y
))
(
x
,
y
:
T
. Dec(
x
=
y
))
(
a
,
b
:
T
.
R
(
a
,
b
)
(strict_part(
x
,
y
.
R
(
x
,
y
);
a
;
b
)
(
a
=
b
)))
latex
by ((((Unfold `strict_part` 0)
CollapseTHEN (AGenRepD ["compound";"basic"]))
)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
a
:
T
.
R
(
a
,
a
)
C1:
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
C1:
6.
x
,
y
:
T
. Dec(
x
=
y
)
C1:
7.
a
:
T
C1:
8.
b
:
T
C1:
9.
R
(
a
,
b
)
C1:
(
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
a
=
b
)
C
2
:
C2:
1.
T
: Type
C2:
2.
R
:
T
T
C2:
3.
a
:
T
.
R
(
a
,
a
)
C2:
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C2:
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
C2:
6.
x
,
y
:
T
. Dec(
x
=
y
)
C2:
7.
a
:
T
C2:
8.
b
:
T
C2:
9. (
R
(
a
,
b
) & (
R
(
b
,
a
)))
(
a
=
b
)
C2:
R
(
a
,
b
)
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
P
Q
,
P
&
Q
,
strict_part(
x
,
y
.
R
(
x
;
y
);
a
;
b
)
,
P
Q
,
P
Q
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
AntiSym(
T
;
x
,
y
.
R
(
x
;
y
))
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
Refl(
T
;
x
,
y
.
E
(
x
;
y
))
,
Order(
T
;
x
,
y
.
R
(
x
;
y
))
Lemmas
order
wf
,
decidable
wf
,
not
wf
origin